

1

OPERATING SYSTEM STRUCTURE

Modern Operating Systems are large and complex and are

carefully engineered to function properly and be modified easily. A

common approach is to partition the task into small components. Each

component is well-defined with carefully defined inputs, outputs, and

function. The components are then interconnected and melded into a

kernel.

OS Structure - types

 Simple Structure

 Layered Approach

 Microkernels Approach

 Modules

 Hybrid Systems

2

Simple Structure

Initially OS were small, simple and had limited functionality.

They were designed and implemented to provide the most

functionality in the least space and were not divided into modules.

Examples of OS with simple monolithic structures are MS-DOS and

UNIX. Disadvantage - Too much functionality combined into one level

and hence difficult to implement, maintain and enhance

3

Layered Approach

In layered approach, the overall functionality and features of the

OS are determined and are separated into smaller, more appropriate

components. Related components are then grouped and placed in a

layer. The bottom layer (layer 0) is the hardware; and the highest

(layer N) is the user interface. The layers are selected such that each

uses functions and services of its lower-level layers. Also the layer

needs to know only what operations are done at each layer not how

these operations are implemented. This allows the layer to hide the

existence of its data structures, operations and hardware from higher-

level layers (abstraction). This approach also simplifies debugging and

system verification.

 Disadvantages

1. Needs careful definition of the layers, because a layer can

use only those layers below it.

2. They tend to be less efficient than other types.

Solution is to use fewer layers with more functionality to provide

the advantages of modularized code while avoiding the difficult

problems of layer definition and interaction.

4

Microkernels Approach

In Microkernel approach, the kernel is modularized and

structured by removing all nonessential components from the kernel,

and implementing them as system and user level programs resulting in

a smaller kernel. Microkernels typically provide process management

and memory management and communication facility. Communication

between client program and services running in user space is provided

by exchanging messages with the microkernel. Architecture of a

typical microkernel is as below

The benefits of the microkernel approach

1. Easy to extend the OS – All new services are added to user space

and consequently do not require modification of the kernel.

2. When the kernel has to be modified, the changes tend to be

fewer, because the microkernel is a smaller kernel.

3. The resulting operating system is easier to port from one

hardware design to another.

4. The microkernel also provides more security and reliability,

since most services are running as user rather than kernel

processes.

5. If a service fails, the rest of the operating system remains

untouched.

 Disadvantage of microkernel approach – increased system function

overhead

5

Loadable Kernel Modules

In this approach the Kernel has a set of core components and

dynamically links in additional services via modules, either at boot

time or during run time. Linking services dynamically is easier than

adding new features directly to the kernel (will require recompiling

the kernel every time a change is made). This type of design is

common in modern implementations of UNIX, such as Solaris, Linux,

and Mac OS X, as well as Windows.

Advantages

1. Each kernel section has defined, protected interfaces;

2. Flexible – any module can call any other module.

3. Efficient – modules do not need to invoke message passing in

order to communicate.

Example – Solaris OS, Linux. Solaris OS is organized around a core

kernel with seven types of loadable kernel modules as shown below

6

Hybrid Systems

In practice, OS combine different structures, resulting in hybrid

systems that address performance, security and usability issues.

Example

1. Linux and Solaris use monolithic structure, (having the OS in a

single address space provides very efficient performance). They

are also modular, (new functionality can be dynamically added to

the kernel).

2. Windows – monolithic – but it retains some behaviour typical of

microkernel systems, and provides support for dynamically

loadable kernel modules.

Three other popular hybrid systems:

1. Apple Mac OS X operating system and

2. Mobile operating systems – iOS and Android.

Android

Software stack

 The Linux kernel – supports process, memory, device and power

management

 The Android runtime environment includes a core set of libraries

and the Dalvik virtual machine.

 Other libraries includes frameworks for developing web browsers

(webkit), database support (SQLite), and multimedia.

7

iOS

Software stack

 Core OS – based on the kernel environment

 Core services – new features – cloud computing, databases

 Media service layer – for graphics, audio, and video

 Cocoa Touch – API – provides frameworks for developing

applications that run on iOS devices. Eg. API for Touch screens

